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Abstract

The combustor designer is typically required to design
liner orifices that effectively mix air jets with crossflow

effluent. CFD combustor analysis is typically used in

the design process; however the jets are usually assumed
to enter the combustor with a uniform velocity and

turbulence profile. The jet-mainstream flow coupling is

usually neglected because of the computational expense.

This CFD study was performed to understand the effect

of jet-mainstream flow coupling, and to assess the

accuracy of jet boundary conditions that are commonly
used in combustor internal calculations.
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A case representative of a plenum-fed quick-mix section

of a Rich Burn/Quick Mix/Lean Burn combustor (i.e. a

jet-mainstream mass-flow ratio of about 3 and a jet-
mainstream momentum-flux ratio of about 30) was

investigated. This case showed that the jet velocity
entering the combustor was very non-uniform, with a

low normal velocity at the leading edge of the orifice Pt

and a high normal velocity at the trailing edge of the Pc,
orifice. Three different combustor-only cases were T
analyzed with uniform inlet jet profile. None of the

"['exit
cases matched the plenum-fed calculations. To assess
liner thickness effects, a thin-walled case was also TJet

analyzed. The CFD analysis showed the thin-walled T**

jets had more penetration than the thick-wailed jets. U**
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Aorifice Geometric Area of Orifice x/H

Atot Total Flow Area in Each Axial Plane y

Ai Flow Area of Cell i

mj/(mj+m..) = eEB

Jet Mass Fraction in Cell i

Density Ratio p/p**
Mixture Fraction

Enthalpy

Duct Height

Momentum-Flux Ratio (Pj V 2)/(p. U2**)

Turbulent Kinetic Energy of Mainstream

Mass-Flow of Jets

Mass-Flow Ratio mj/m.

Mass-Flow of Mainstream

Static Pressure (N/m2)
Static Pressure at Combustor Exit

Static Pressure of Jet

Static Pressure Upstream of Quick-Mix

Orifices

Total Pressure at Plenum Entrance

Static Pressure of Mainstream

Temperature (K)

Exit Temperature

Temperature of Jet

Temperature of Mainstream

Mainstream Flow Velocity (m/s)

Jet Velocity (m/s)

Axial Coordinate, x=0 at leading edge of the
orifice

Axial Distance-to-Duct Height Ratio
Vertical Coordinate
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Lateral Coordinate

Turbulent Energy Dissipation of Mainstream

Rich-Burn Equivalence Ratio

Lean-Burn Equivalence Ratio

Density of Jet

Density of Mainstream

Introduction

The mixing of jets with mainstream flow is very

significant in many gas turbine combustor applications.

In conventional combustor design, air is injected

through primary and dilution orifices to mix with hot

gas effluent. The design of the orifices is important in

combustor performance and durability (i.e. exit

temperature pattern factor, exit radial temperature

profile, combustion efficiency, emissions, liner hot

streaks, etc.). Dilution jet mixing has received a lot of
attention as discussed by Holdemanl. More recently, jet

mixing has drawn a lot of attention in regards to low

emission combustor design, especially the Rich Burn/
Quick Mix/Lean Burn (RQL)2 combustor design. The

RQL combustor requires a large amount of bypass air

(typically a jet-to-mainstream mass-flow ratio of 3) to

be efficiently mixed with rich burn effluent so that NOx

emissions are kept to a minimum) The optimization

of this type of mixing process has received a lot of

study.4-16

CFD analysis is typically used to help design the orifice

pattern for effective mixing. To conserve computer

resources, CFD analysis is usually performed on the
interior of the combustor; the inlet boundary conditions

for the air jets are specified by the designer. The jets are

typically input with uniform velocity and turbulence

levels, and the flow direction is determined by 1D

annulus models. Usually, an effective orifice flow area

is modeled, corresponding to the geometric area

multiplied by the discharge coefficient. Other research 17-

21 has shown that there is a coupling effect between the

annulus airflow and combustor interior flow, and the

prediction of jet penetration and mixing is strongly

affected by including the annulus flow in the CFD

analysis. Indeed, in the next five years as parallel

computers are utilized, CFD analysis will be performed

starting from the compressor exit and going all the way
to the combustor exit. But, for now, only the interior

of the combustor is usually analyzed, and ways of

defining the jet boundary conditions are needed.

McGuirk's 20-21 work focussed on primary and dilution

hole airflows that had jet-to-mainstream mass-flow
ratios less than 0.5. This paper studies mass-flow

ratios more commonly used in RQL combustors.

Instead of annulus flow, the air jets are fed by a plenum

as a first step in understanding the coupling effect

between jet and mainstream. A baseline plenum case is

discussed first, and the nonuniformity of the jet exiting

the orifice is presented. The CFD analysis is then

verified by comparing isothermal numerical predictions
with experimental measurements. Next, three cases of

the combustor interior are analyzed to try and identify

ways to specify jet boundary conditions that capture the

flow coupling effects. And last, a thin-walled liner case

is compared to a thick-walled liner case to assess the

differences in flow coupling.

CFD C_e

The approach in this study was to perform 3-D

numerical calculations on generic combustor geometries

with and without the addition of plenums. The code

named CFD-ACE 22 was used to perform all of the

computations. The basic capabilities/methodologies in
CFD-ACE include:

(1) co-located, fully implicit and strongly conservative
finite volume formulation;

(2) solution of two-and three-dimensional Navier-

Stokes equations for incompressible and

compressible flows;

(3) non-orthogonal curvilinear coordinates;

(4) multi-block grid topology;

(5)upwind, central (with damping), second order

upwind and Osher-Chakravarthy differencing
schemes;

(6) standard 23, extended, RNG 24 and low Reynolds
number25 k-E turbulence models;

(7) instantaneous, one-step, two-step, and four-step
heat release and emission combustion models;

(8) spray models including trajectory, vaporization,
etc.; and
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(9) pressure-basedsolutionalgorithms including
SIMPLE and a variant of SIMPLEC.

Details Of Numerical Calculations

The focus of this study was to analyze the flow

coupling effect that can occur in jet-in-crossflow

geometries. The baseline configuration, shown in

Figure I, can be described as having an annular quick-
mix zone section with orifices located on both the inner

and outer diameter liner. The orifices are fed by

plenums. The orifice length-to-diameter ratio, L/d, was

greater than one, representative of a thick-walled
combustor. The inner radius of the quick-mix zone

annulus measured 0.3896m and the outer radius

measuring 0.4404m. The height of the quick-mix zone
was 0.0508m. The axial length of the calculation

extended 0.152m from the leading edge of the orifice

(x/H=3.0). The walls (i.e. thickness of the orifices)

were modeled as being 0.0064m thick. Each orifice was

fed by a plenum that was 0.065m in length and 0.076m

in height. The orifices were slots with semi-circular
ends and had 2:1 length-to-width aspect ratios.

To enhance the computational efficiency of the
numerical calculations, only one set of orifices (top and

bottom) were modeled. The orifices were located on the
inner and outer diameter in the same axial plane, and

inline in the transverse direction. The transverse

calculation domain extended from midplane to midplane

between the jets' centerline. The included angle was

3.75 degrees. Periodic boundary conditions were
assumed on the transverse boundaries.

For the combustor-only calculations only the quick-mix
zone was used. The quick-mix orifices were modeled as

inlets with a uniform velocity profile. The velocity

magnitude was determined via three different methods

(Figure 2). The first method used the velocity
calculated from the plenum to mixer exit pressure drop.

The second method determined the pressure drop by

using the total pressure in the plenum and the average

static pressure across the quick-mix zone. The third
method calculated a velocity based on the mass-flow

through the geometric area of the orifice. The jet
velocities for the three method were calculated to be;

155 m/sec, 135 m/sec, and 92 m/sec respectively.

To assess the effects of orifice thickness, a thin-walled

geometry was also analyzed. The thin-walled case was

identical to the baseline case except for the orifice

thickness. For the thin-walled geometry the wall

thickness was reduced to be 0.000889m.

The flow conditions of the mainstream and the jets

were;

Mainstream Jets

U** = 43.5 m/s Pjet = 1.03 x 106 N/m 2

T** = 2035 K Tie t = 777 K

P** = 9.72 x 105 N/m 2

k** = 118.0 m2/sec2

E._ = 5.4 x 104 m2/sec 3

MR = 3.20

DR = 3.20

Texit = 1755 K

_brb = 2.0

_blb= 0.425

Grids

The computational mesh was created using CFD-
GEOM26, an interactive three-dimensional geometry

modeling and mesh generation software. The baseline

case consisted of approximately 86,500 cells. The grid

shown in Figure 1 was created with 5 domains. Each

plenum was modeled as a domain as well as each

orifice. The quick-mix zone was also specified as a
domain and was composed of 28,329 cells, 71 cells in

the axial direction (x), 19 cells in the vertical direction

(y), and 21 cells in the transverse direction (z). The

plenum grid was distributed as 42x29x21 cells (x,y,z,
direction). The 2:1 slots were composed of 28xli

uniformly distributed cells, with 7 cells in the vertical

direction to represent the combustor wall thickness
(0.0064m). The grid upstream and downstream of the

slots was expanded/contracted so that each cell adjacent
to the slot matched the cell size in the interior of the

slot. The cells in the vertical direction were compressed

in the wall regions to more accurately capture wall
effects.

For the combustor-only case a single domain mesh

consisting of solely the quick-mix section was used.

Finally, the thin-walled case was the same as the

baseline case except the thickness of the orifices was
reduced.
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Numerics & Models

The following conservation equations were solved: u
momentum, v momentum, w momentum, mass

(pressure correction), turbulent kinetic energy (k),

turbulent energy dissipation (£), and mixture fraction

(f). The convective fluxes were calculated using upwind

differencing, and the diffusive fluxes were calculated

using central differencing. The standard k-£ turbulence
model was employed and conventional wall functions
were used. The walls were assumed to be adiabatic.

The turbulent Schmidt and Prandtl numbers were set to

be 0.5. A fast chemistry (instantaneous) model was

assumed. Equilibrium products were also assumed.
The inlet to the rich-burn section was assumed to be the

equilibrium products of a fully-burned 1.8 equivalence

ratio. The fuel used was CIoHI9, representative of Jet

A fuel.

Converfence

All error residuals were reduced at least 6 orders of

magnitude, and continuity was conserved in each axial

plane to the fifth decimal. A converged solution
required approximately 5-7 CPU hours on a IBM

RS6000 Model 560 computer. Although the cases

reported in this paper were performed using the IBM

RS6000, additional cases were run using the NAS C-90

computer.

Results and Discussion

Baseline Plenum-Fed Case

Figure 3 shows the temperature contours for the

baseline plenum-fed case. The temperature contours are

plotted in a lateral plane through the orifice centerline.

The jets show near optimum jet penetration, penetrating

to approximately 1/4 duct height. There is a slight

difference in penetration between the outer diameter and

inner diameter jets; this difference is caused by

geometric differences. The coupling effect causes a non-

uniformity of the jet flowfield as it exits the orifice. By

examining the velocity vectors and profile at the orifice

exit (Figure 4), the jet velocity non-uniformity in the

jet flowfield can be seen. Because of the large L/d of

the orifice, the jet velocity is essentially normal to the
crossflow. A low normal velocity at the leading edge of

the orifice and a high normal velocity at the trailing

edge is evident.

Similarly, the static and total pressure at the orifice

discharge was also non-uniform as seen in Figure 5 and

6. There is a high total pressure core in the center of
the orifice, but at the edges of the orifice there is a total

pressure loss. The non-uniform static pressure is

further illustrated in the axial static pressure plot

presented in Figure 7. The static pressure varies from

30,000 N/m2 above combustor exit pressure to -15,000

N/m2 below the combustor exit pressure.

Non-Reacting Validation Case

To validate the plenum-fed baseline case, it was decided

to perform a thick-orifice isothermal case for which jet

mixing data existed. The case selected is described

below, with the comparison between numerical

predications and experimental measurements.

Geometry_

For the validation case, the geometry consisted of a

cylindrical mixing zone with 8 round holes uniformly

spaced on the can circumference. Figure 8 shows a
schematic of the test geometry. The diameter of each

hole was 0.0178m (0.7 inches) and diameter of the can

was 0.0792m (3.88 inches). The thickness of each

round hole was 0.0792m (3.12 inches). Figure 8 shows

the plenum which is approximately 0.529m (6 inches)

in length. The mainstream flow enters from an inlet

section 0.3048m long and 0.079m in diameter. The

inlet section had a divergence angle of 2 degrees with an
initial diameter of 0.079m that diverges to the mixing
section diameter of 0.0986m. The orifices are located

0.0508m downstream of the bulkhead that connects the

mainstream inlet feed into the quick-mix region. The

experimental procedure is described in, for example,
Reference 14.

The computational grid is shown in Figure 9. To

enhance the computational efficiency of the numerical
calculations, only one orifice was modeled (45 deg.

sector) and periodic boundaries were assumed. The grid

was separated into three distinct blocks. The first block

represented the quick-mix zone, consisting of 78 cells in

the axial direction (x), 19 cells in the vertical direction

(y), and 29 cells in the transverse (z) direction. The

second block was the plenum; it was composed of 11 x

14 x 11 cells (x,y,z). The third block represented the

orifice, composed of 29 x 29 uniformly distributed
cells. The orifice was modeled with 14 cells in the
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verticaldirectionto representthethicknessof the
combustorwall. In thequick-mixsection,thegrid
upstreamanddownstreamof theorificeregionwas
expanded/contractedsothateachcelladjacentto the
orificeregionmatchedthecellsizein theslotregion.
Thecellsin theverticaldirectionwerecompressedin
thevicinityof thewailtomoreaccuratelycapturewall
effects.

Flow Conditions

The flow conditions of the mainstream and jets were

specified to be:

Mainstream Jets

U** = 4.637 m/s Pjet = 106,166 N/m 2

T.o = 291.67 K Tjet = 291.67 K

P** = 101,341 N/m 2

k** = 2.9027 x 10-2 m2/sec2

I_** = 3.2063 x 10 -1 m2/sec 3

The mass-flow ratio was specified to be 1.0

corresponding to a momentum-flux ratio of 30.

Validation Case Results

Shown in Figure 10 are the jet mixture fraction axial

slices measurements. The comparable numerical results

are also presented in Figure 10. Axial slices were
extracted at x/R locations of 1.28, 1.54, and 2.05

downstream of the leading edge of the round hole. The
same color bar was used for the calculated results and

experimental measurements. The numerical results
show very good agreement with the experimental results
at all of the downstream stations. At the closest station

(x/R=l.28), the computational results capture the center

mainstream core along with the slight bluish contour

levels present at about mid-radius. Moving to the
farther downstream locations, the numerical results

show a slightly slower mixing rate than seen in the

experimental results.

Figure 11 shows the spatial unmixedness curves for the
CFD and experimental results. Planar

unmixedness,Us,27 is a parameter that quantifies the

unmixedness of a distribution and can be defined as:

U s = Cvar / [Cavg (1-Cavg)]

Good overall agreement can be seen. Thus, from an

engineering viewpoint, the plenum-fed calculations

capture the overall characteristics of the jets-in-
crossflow.

Combustor-Only Calculations

Shown in Figure 12 are the results of the combustor-

only calculations for three specified uniform inlet

velocities: 1)jet velocity corresponding to the overall

pressure drop velocity, 155 m/sec; 2) jet velocity

corresponding to the average pressure drop velocity, 135

m/sec; and 3) jet velocity corresponding to the mass-

flow through the orifice geometric area, 92 m/sec.

Compared to the baseline calculation (Figure 3), each
combustor-only case predicted jet overpenetration. The

highest jet velocity produced the greatest amount of

overpenetration, as evidenced by the mainstream flow

being deflected to the outer wall. This is illustrated by

the hotter temperatures near the ID and OD wails. The

results of the lowest jet velocity (Method 3) still

predicted overpenetrating jets, but gave the closest
overall agreement to the baseline case results. Note that

the OD near wall temperatures are hotter than the ID

temperature for each case. This occurs because the

office spacing is greater for the OD wall, resulting in

more mainstream flow passing between the jets.

Thus it appears that there is no simple way to capture

the flow coupling that occurs with plenum-fed

flowfields. As discussed previously for the baseline

plenum geometry, there exists non-uniformity in the jet

flow at the discharge orifice plane. In order to use an

inlet boundary condition for the orifice, one would have

to devise a way to determine the velocity profile that
correctly produces the flow non-uniformity at the orifice

discharge. This includes correctly modeling the non-

uniform velocity profile, turbulence quantities, and the

flow angle. The determination of these factors creates

potential problems because of their variation across the
orifice cross-sectional area. If it was possible to

ascertain an acceptable method of capturing the flow

non-uniformity, there is no guarantee that this method

would be generally applicable to a variety of different

orifices (i.e. round holes, slanted slots, etc .... ).

Therefore from a design standpoint, it probably would

be very difficult to accurately capture the jet coupling

effect without the use of the plenums.
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Effect Qf Wall Thickness

For completeness, analysis was performed on a thin-
walled liner to asses the effect of wall thickness on the

flow coupling effect. Presented in Figure 13 are the

temperature contour results of the thin-walled case.

Compared to the thick-walled case (Figure 3), the thin-

walled geometry showed higher jet penetration and

higher overall downstream mixing.

Based on the work performed by Lichtarowicz, Duggins,

and Markland 28, the discharge coefficient for orifices

with length/diameter ratios (L/d) between 0 and 1 vary

significantly as a function of L/d. From these results, it
would be safe to assume that the thin-walled

configuration (Lid = 0.04) would have a smaller

discharge coefficient than the thick-walled design (L/d >

1). The lower Cd in the thin-walled case would then

result in an increased pressure drop across the orifice for

the same mass-flow ratio. The total pressure variation

for the two geometries is presented in Figure 14. The

pressure drop, plenum total pressure-combustor total

pressure, for the thin-walled case is about 6.5% whereas

the thick-walled case has a pressure drop around 5.8%.

Despite the variation in Cd, the normal velocity levels

were essentially the same for both cases. The

comparable normal velocity levels for both the thin and
thick-walled cases are shown in Figure 15. The

differences in the penetration levels for the thick and
thin-walled cases can be addressed by examining the

velocity profiles. The velocity flowfield for both cases
exhibit similar characteristics, but one significant

difference seen is that the velocity profiles for the thin-

walled case are pushed farther into the mainstream flow.

This inboard translation of the velocity profiles results

in more jet penetration into the quick-mix zone for the

thin-walled case. Thus the increased jet penetration can

be directly attributed to the lower discharge coefficient

and subsequently the higher pressure drop evident in the

thin-walled case. The importance of modeling the flow

through the orifice is thereby shown.

_onclusions

CFD analyses were performed on air jets injected into

rich-burn effluent flowing in an annulus. Jet-to-

mainstream mass-flow ratios (-3) typical of RQL

combustors were analyzed. Two types of calculations

were performed: 1) only the combustor was modeled,

with the jet flow specified at the orifice discharge plane,

and 2) the jet plenum and orifice were included in the
calculation domain. Results from the CFD analysis
showed:

1) There exists a strong coupling between the jet flow

and mainstream flow evidenced by the large velocity

profile at the orifice exit.

2) This coupling effect could not be easily captured by

specifying commonly-used uniform jet velocity

boundary conditions for combustor-only CFD
calculations.

3) The only way to accurately predict jet-in-crossflow
flowfields is to include both the interior and exterior

(plenums) flowfields in the CFD analysis. To do

this, an order of magnitude increase in the number of

computational cells is needed over conventional

computational grid sizes.

4) CFD analysis was able to capture the effect of liner

thickness on jet penetration and mixing, provided the
calculation domain included the external and internal

combustor geometry.
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